Dynamic classification method of fault indicators for bearings’ monitoring

نویسندگان

  • Sanaa Kerroumi
  • Xavier Chiementin
  • Lanto Rasolofondraibe
چکیده

This paper introduces a dynamic classification method inspired by DBSCAN clustering method for machine condition monitoring in general and for bearings in particular. This method has been developed for two purposes; first to monitor the health condition of a bearing in real time and second to study the behavior of defected rolling element bearing. To fulfill those purposes, the temporal indicator RMS (Root Mean Square) has been chosen as an indicator of the bearing health condition; this indicator has been computed from signals extracted from an experimental bench by two piezoelectric sensors placed radially and axially. The decision upon the right classification method was taken after a comparative study between two classical of the clustering methods (K-means and Density Based Spatial Clustering of Applications with Noise DBSCAN), which led to the conclusion that DBSCAN is more adapted to vibratory signals. DBSCAN was re-adapted to follow any changing in bearings behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...

متن کامل

A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings

The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features ...

متن کامل

Finite element model updating of a geared rotor system using particle swarm optimization for condition monitoring

In this paper, condition monitoring of a geared rotor system using finite element (FE) model updating and particle swarm optimization (PSO) method is onsidered. For this purpose, employing experimental data from the geared rotor system, an updated FE model is obtained. The geared rotor system under study consists of two shafts, four bearings, and two gears. To get the experimental data,  iezoel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013